Меню

Финансовые функции ежемесячные выплаты excel

10 популярных финансовых функций в Microsoft Excel

Excel имеет значительную популярность среди бухгалтеров, экономистов и финансистов не в последнюю очередь благодаря обширному инструментарию по выполнению различных финансовых расчетов. Главным образом выполнение задач данной направленности возложено на группу финансовых функций. Многие из них могут пригодиться не только специалистам, но и работникам смежных отраслей, а также обычным пользователям в их бытовых нуждах. Рассмотрим подробнее данные возможности приложения, а также обратим особое внимание на самые популярные операторы данной группы.

Выполнение расчетов с помощью финансовых функций

В группу данных операторов входит более 50 формул. Мы отдельно остановимся на десяти самых востребованных из них. Но прежде давайте рассмотрим, как открыть перечень финансового инструментария для перехода к выполнению решения конкретной задачи.

Переход к данному набору инструментов легче всего совершить через Мастер функций.

  1. Выделяем ячейку, куда будут выводиться результаты расчета, и кликаем по кнопке «Вставить функцию», находящуюся около строки формул.

Запускается Мастер функций. Выполняем клик по полю «Категории».

Открывается список доступных групп операторов. Выбираем из него наименование «Финансовые».

В Мастер функций также можно перейти через вкладку «Формулы». Сделав переход в неё, нужно нажать на кнопку на ленте «Вставить функцию», размещенную в блоке инструментов «Библиотека функций». Сразу вслед за этим запустится Мастер функций.

Имеется в наличии также способ перехода к нужному финансовому оператору без запуска начального окна Мастера. Для этих целей в той же вкладке «Формулы» в группе настроек «Библиотека функций» на ленте кликаем по кнопке «Финансовые». После этого откроется выпадающий список всех доступных инструментов данного блока. Выбираем нужный элемент и кликаем по нему. Сразу после этого откроется окно его аргументов.

ДОХОД

Одним из наиболее востребованных операторов у финансистов является функция ДОХОД. Она позволяет рассчитать доходность ценных бумаг по дате соглашения, дате вступления в силу (погашения), цене за 100 рублей выкупной стоимости, годовой процентной ставке, сумме погашения за 100 рублей выкупной стоимости и количеству выплат (частота). Именно эти параметры являются аргументами данной формулы. Кроме того, имеется необязательный аргумент «Базис». Все эти данные могут быть введены с клавиатуры прямо в соответствующие поля окна или храниться в ячейках листах Excel. В последнем случае вместо чисел и дат нужно вводить ссылки на эти ячейки. Также функцию можно ввести в строку формул или область на листе вручную без вызова окна аргументов. При этом нужно придерживаться следующего синтаксиса:

Главной задачей функции БС является определение будущей стоимости инвестиций. Её аргументами является процентная ставка за период («Ставка»), общее количество периодов («Кол_пер») и постоянная выплата за каждый период («Плт»). К необязательным аргументам относится приведенная стоимость («Пс») и установка срока выплаты в начале или в конце периода («Тип»). Оператор имеет следующий синтаксис:

Оператор ВСД вычисляет внутреннюю ставку доходности для потоков денежных средств. Единственный обязательный аргумент этой функции – это величины денежных потоков, которые на листе Excel можно представить диапазоном данных в ячейках («Значения»). Причем в первой ячейке диапазона должна быть указана сумма вложения со знаком «-», а в остальных суммы поступлений. Кроме того, есть необязательный аргумент «Предположение». В нем указывается предполагаемая сумма доходности. Если его не указывать, то по умолчанию данная величина принимается за 10%. Синтаксис формулы следующий:

Читайте также:  Компенсации выплаты не облагаемые налогами

Оператор МВСД выполняет расчет модифицированной внутренней ставки доходности, учитывая процент от реинвестирования средств. В данной функции кроме диапазона денежных потоков («Значения») аргументами выступают ставка финансирования и ставка реинвестирования. Соответственно, синтаксис имеет такой вид:

ПРПЛТ

Оператор ПРПЛТ рассчитывает сумму процентных платежей за указанный период. Аргументами функции выступает процентная ставка за период («Ставка»); номер периода («Период»), величина которого не может превышать общее число периодов; количество периодов («Кол_пер»); приведенная стоимость («Пс»). Кроме того, есть необязательный аргумент – будущая стоимость («Бс»). Данную формулу можно применять только в том случае, если платежи в каждом периоде осуществляются равными частями. Синтаксис её имеет следующую форму:

Оператор ПЛТ рассчитывает сумму периодического платежа с постоянным процентом. В отличие от предыдущей функции, у этой нет аргумента «Период». Зато добавлен необязательный аргумент «Тип», в котором указывается в начале или в конце периода должна производиться выплата. Остальные параметры полностью совпадают с предыдущей формулой. Синтаксис выглядит следующим образом:

Формула ПС применяется для расчета приведенной стоимости инвестиции. Данная функция обратная оператору ПЛТ. У неё точно такие же аргументы, но только вместо аргумента приведенной стоимости («ПС»), которая собственно и рассчитывается, указывается сумма периодического платежа («Плт»). Синтаксис соответственно такой:

Следующий оператор применяется для вычисления чистой приведенной или дисконтированной стоимости. У данной функции два аргумента: ставка дисконтирования и значение выплат или поступлений. Правда, второй из них может иметь до 254 вариантов, представляющих денежные потоки. Синтаксис этой формулы такой:

СТАВКА

Функция СТАВКА рассчитывает ставку процентов по аннуитету. Аргументами этого оператора является количество периодов («Кол_пер»), величина регулярной выплаты («Плт») и сумма платежа («Пс»). Кроме того, есть дополнительные необязательные аргументы: будущая стоимость («Бс») и указание в начале или в конце периода будет производиться платеж («Тип»). Синтаксис принимает такой вид:

ЭФФЕКТ

Оператор ЭФФЕКТ ведет расчет фактической (или эффективной) процентной ставки. У этой функции всего два аргумента: количество периодов в году, для которых применяется начисление процентов, а также номинальная ставка. Синтаксис её выглядит так:

Нами были рассмотрены только самые востребованные финансовые функции. В общем, количество операторов из данной группы в несколько раз больше. Но и на данных примерах хорошо видна эффективность и простота применения этих инструментов, значительно облегчающих расчеты для пользователей.

Источник статьи: http://lumpics.ru/financial-functions-in-excel/

Использование формул Excel для определения объемов платежей и сбережений

Управление личными финансами может быть сложной задачей, особенно если вам нужно планировать свои платежи и сбережения. Формулы Excel помогают вычислить будущую стоимость ваших долгов и инвестиций, позволяя понять, сколько времени потребуется для достижения целей. Используйте следующие функции:

ПЛТ: возвращает сумму периодического платежа для аннуитета на основе постоянства сумм платежей и процентной ставки.

КПЕР: возвращает количество периодов выплаты для инвестиции на основе регулярных постоянных выплат и постоянной процентной ставки.

ПВ: возвращает приведенную (к текущему моменту) стоимость инвестиции. Приведенная (нынешняя) стоимость представляет собой общую сумму, которая на данный момент равноценна ряду будущих выплат.

БС: возвращает будущую стоимость инвестиции при условии периодических равных платежей и постоянной процентной ставки.

Расчет ежемесячных платежей для погашения задолженности по кредитной карте

Предположим, остаток к оплате составляет 5400 долларов США под 17% годовых. Пока задолженность не будет погашена полностью, вы не сможете рассчитываться картой за покупки.

Читайте также:  Выплаты семьям с несовершеннолетними детьми 3000

С помощью функции ПЛТ(ставка;КПЕР;ПС)

получаем ежемесячный платеж в размере 266,99 долларов США, который позволит погасить задолженность за два года.

Аргумент «ставка» — это процентная ставка на период погашения кредита. Например, в данной формуле ставка 17% годовых делится на 12 — количество месяцев в году.

Аргумент КПЕР 2*12 — это общее количество периодов выплат по кредиту.

Аргумент ПС или приведенной стоимости составляет 5400 долларов США.

Расчет ежемесячных платежей по ипотеке

Представьте дом стоимостью 180 000 долларов США под 5% годовых на 30 лет.

С помощью функции ПЛТ(ставка;КПЕР;ПС)

получена сумма ежемесячного платежа (без учета страховки и налогов) в размере 966,28 долларов США.

Аргумент «ставка» составляет 5%, разделенных на 12 месяцев в году.

Аргумент КПЕР составляет 30*12 для ипотечного кредита сроком на 30 лет с 12 ежемесячными платежами, оплачиваемыми в течение года.

Аргумент ПС составляет 180 000 (нынешняя величина кредита).

Расчет суммы ежемесячных сбережений, необходимой для отпуска

Необходимо собрать деньги на отпуск стоимостью 8500 долларов США за три года. Процентная ставка сбережений составляет 1,5%.

С помощью функции ПЛТ(ставка;КПЕР;ПС;БС)

получаем, что чтобы собрать 8500 долларов США за три года, необходимо откладывать по 230,99 долларов США ежемесячно.

Аргумент «ставка» составляет 1,5%, разделенных на 12 месяцев — количество месяцев в году.

Аргумент КПЕР составляет 3*12 для двенадцати ежемесячных платежей за три года.

Аргумент ПС (приведенная стоимость) составляет 0, поскольку отсчет начинается с нуля.

Аргумент БС (будущая стоимость), которую необходимо достичь, составляет 8500 долларов США.

Теперь допустим, вы хотите собрать 8500 долларов США на отпуск за три года, и вам интересно, какую сумму необходимо положить на счет, чтобы ежемесячный взнос составлял 175,00 долларов США. Функция ПС рассчитает размер начального депозита, который позволит собрать желаемую сумму.

С помощью функции ПС(ставка;КПЕР;ПЛТ;БС)

мы узнаем, что необходим начальный депозит в размере 1969,62 долларов США, чтобы можно было откладывать по 175,00 долларов США в месяц и собрать 8500 долларов США за три года.

Аргумент «Ставка» составляет 1,5%/12.

Аргумент КПЕР составляет 3*12 (или двенадцать ежемесячных платежей за три года).

Аргумент ПЛТ составляет -175 (необходимо откладывать по 175 долларов США в месяц).

Аргумент БС (будущая стоимость) составляет 8500.

Расчет срока погашения потребительского кредита

Представьте, что вы взяли потребительский кредит на сумму 2500 долларов США и согласились выплачивать по 150 долларов США ежемесячно под 3% годовых.

С помощью функции КПЕР(ставка;ПЛТ;ПС)

выясняем, что для погашения кредита необходимо 17 месяцев и несколько дней.

Аргумент «Ставка» составляет 3%/12 ежемесячных платежей за год.

Аргумент ПЛТ составляет -150.

Аргумент ПС (приведенная стоимость) составляет 2500.

Расчет суммы первого взноса

Скажем, вы хотите приобрести автомобиль стоимостью 19 000 долларов США под 2,9 % процентной ставки за три года. Вы хотите, чтобы ежемесячные платежи составляли 350 долларов США, поэтому вам нужно вычислять сумму первой выплаты. В этой формуле результатом функции ПС является сумма займа, которая затем вычитается из цены покупки, чтобы получить первый взнос.

С помощью функции ПС(ставка;КПЕР;ПЛТ)

выясняем, что первый взнос должен составлять 6946,48 долларов США.

Сначала в формуле указывается цена покупки в размере 19 000 долларов США. Результат функции ПС будет вычтен из цены покупки.

Читайте также:  Размеры выплат при ликвидации предприятия

Аргумент «Ставка» составляет 2,9%, разделенных на 12.

Аргумент КПЕР составляет 3*12 (или двенадцать ежемесячных платежей за три года).

Аргумент ПЛТ составляет -350 (необходимо будет выплачивать по 350 долларов США в месяц).

Оценка динамики увеличения сбережений

Начиная с 500 долларов США на счету, сколько можно собрать за 10 месяцев, если класть на депозит по 200 долларов США в месяц под 1,5% годовых?

С помощью функции БС(ставка;КПЕР;ПЛТ;ПС)

получаем, что за 10 месяцев выйдет сумма 2517,57 долларов США.

Аргумент «Ставка» составляет 1,5%/12.

Аргумент КПЕР составляет 10 (месяцев).

Аргумент ПЛТ составляет -200.

Аргумент ПС (приведенная стоимость) составляет -500.

Источник статьи: http://support.microsoft.com/ru-ru/office/%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5-%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB-excel-%D0%B4%D0%BB%D1%8F-%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F-%D0%BE%D0%B1%D1%8A%D0%B5%D0%BC%D0%BE%D0%B2-%D0%BF%D0%BB%D0%B0%D1%82%D0%B5%D0%B6%D0%B5%D0%B9-%D0%B8-%D1%81%D0%B1%D0%B5%D1%80%D0%B5%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9-11cb708f-c137-4ef8-bcf3-5137aaeb4b20

Финансовые функции в Excel

Для иллюстрации наиболее популярных финансовых функций Excel, мы рассмотрим заём с ежемесячными платежами, процентной ставкой 6% в год, срок этого займа составляет 6 лет, текущая стоимость (Pv) равна $150000 (сумма займа) и будущая стоимость (Fv) будет равна $0 (это та сумма, которую мы надеемся получить после всех выплат). Мы платим ежемесячно, поэтому в столбце Rate вычислим месячную ставку 6%/12=0,5%, а в столбце Nper рассчитаем общее количество платёжных периодов 20*12=240.

Если по тому же займу платежи будут совершаться 1 раз в год, то в столбце Rate нужно использовать значение 6%, а в столбце Nper – значение 20.

Выделяем ячейку A2 и вставляем функцию ПЛТ (PMT).

Пояснение: Последние два аргумента функции ПЛТ (PMT) не обязательны. Значение Fv для займов может быть опущено (будущая стоимость займа подразумевается равной $0, однако в данном примере значение Fv использовано для ясности). Если аргумент Type не указан, то считается, что платежи совершаются в конце периода.

Результат: Ежемесячный платёж равен $1074.65.

Совет: Работая с финансовыми функциями в Excel, всегда задавайте себе вопрос: я выплачиваю (отрицательное значение платежа) или мне выплачивают (положительное значение платежа)? Мы получаем взаймы сумму $150000 (положительное, мы берём эту сумму) и мы совершаем ежемесячные платежи в размере $1074.65 (отрицательное, мы отдаём эту сумму).

СТАВКА

Если неизвестная величина – ставка по займу (Rate), то рассчитать её можно при помощи функции СТАВКА (RATE).

Функция КПЕР (NPER) похожа на предыдущие, помогает рассчитать количество периодов для выплат. Если мы ежемесячно совершаем платежи в размере $1074.65 по займу, срок которого составляет 20 лет с процентной ставкой 6% в год, то нам потребуется 240 месяцев, чтобы выплатить этот заём полностью.

Это нам известно и без формул, но мы можем изменить ежемесячный платёж и увидеть, как это отразится на количестве платёжных периодов.

Вывод: Если мы будем ежемесячно вносить платёж в размере $2074.65 , то выплатим заём менее чем за 90 месяцев.

Функция ПС (PV) рассчитывает текущую стоимость займа. Если мы хотим выплачивать ежемесячно $1074.65 по взятому на 20 лет займу с годовой ставкой 6%, то какой размер займа должен быть? Ответ Вы уже знаете.

В завершение рассмотрим функцию БС (FV) для расчёта будущей стоимости. Если мы выплачиваем ежемесячно $1074.65 по взятому на 20 лет займу с годовой ставкой 6%, будет ли заём выплачен полностью? Да!

Но если мы снизим ежемесячный платёж до $1000, то по прошествии 20 лет мы всё ещё будем в долгах.

Источник статьи: http://office-guru.ru/excel/finansovye-funkcii-v-excel-516.html